

Disclosures – Yohann Loriot

Research support/PI	Janssen, Merck, Sanofi
Employee	
Consultant	
Major stockholder	
Speakers bureau	
Honoraria	Astellas, AstraZeneca, Janssen, Roche, Sanofi, Ipsen
Scientific advisory board	Astellas, AstraZeneca, Clovis, Merck, Roche, Seattle Genetics, BMS, Nektar

Outline

- Background
- Current use of Immune checkpoints inhibitors
- Immune checkpoints inhibitors in NMIBC

Outline

- Background
- Current use of Immune checkpoints inhibitors
- Immune checkpoints inhibitors in NMIBC

	Outline
•	Background
•	Current use of Immune checkpoints inhibitors
•	Immune checkpoints inhibitors in NMIBC

Open questions

- How to identify responders ?
- How to identify superprogressors ?
- When should we treat patients ?
- How long should we treat patients ?
- How should we give ICI for frail patients ?
- How to explain resistance and to overcome resistance ?

Future strategies for immunotherapy

- Targeting several ICI together
- Enhancing neo-antigen expression
- Combination with targeted therapies, chemo or IR •
- Targeting T cell metabolism and microenvironnement Reprogramming host microbiota
- Use earlier

Future strategies for immunotherapy

- Targeting several ICI together
- Enhancing neo-antigen expression
- Combination with targeted therapies, chemo or IR
- Targeting T cell metabolism and microenvironnement
- Reprogramming host microbiota
- Use earlier

Why using earlier ?

- More patients
- Fewer mechanisms of resistance
- Easier to deliver

What have we learnt so far from ICI in neoadjuvant setting?

- Feasible
- Antitumour activity at least as single agent
- Data support moving earlier

Rationale for NMIBC

- Increasing tumor cell PD-L1 expression actually predicts localized UC stage progression, independent of tumor grade
- PD-L1 levels are highest in CIS and within granulomata of bladder tissues of patients failing BCG therapy
- Increased expression of T-cell-inhibitory PD-L1 by mononuclear cells that are
 recruited into bladder tissues in response to BCG therapy may contribute to
 a decline in the effectiveness of BCG therapy over time.
- Preclinical data suggest high activity of PDL1 inhibitors in orthotopic bladder tumors

	Non-Responder (% (+) Staining))	Responder (% (+) Staining))	P-value
CD8	0.715	0.8	0.4795
CD4	0.48	0.4	0.5302
FOXp3	0.46	0.36	0.4246
CD68	0.75	0.76	0.9306
PD-L1 (SP-142)	0.13	0.04	0.2603
PD-1	0.29	0.32	0.8102

Immune checkpoints inhibitors in NMIBC?

- PDL1 expression may be mechanism of resistance to BCG in a subset of NMIBC
- 2 setting to investigate: BCG unresponsive NMIBC and BCG-naive NMIBC
- Later, if positive, ICI may substitute BCG
- Safety is critical to assess
- Duration of response is to most relevant clinical efficacy endpoint
- Translational studies needed in high-risk NMIBC (mutational landscape, TMB, etc)

N = 102	n	%	95% CI
CR	42	41.2	31.5-51.4
lon-CR	58	56.9	46.7-66.6
Persistent ^b	41	40.2	30.6-50.4
Recurrent	7	6.9	2.8-13.6
NMIBC stage progression ^d	9	8.8	4.1-16.1
Non-bladder malignancy®	1	1.0	0.0-5.3
Progression to T2	0	0	NA-NA
Nonevaluable ^f	2	2.0	0.2-6.9

KEYNOTE-057: Sir	ngle	e-Arm, Open-Label Phase 2 Study
	o N	CRR. N. (RML CIV
Oursel	49/102	410/0164140
Ann wars	427104	
46	11/30	367(19.9.56.1)
>45	31/72	43 1 (31 4 55 3)
Sex		
Female	7/17	412(18467.1)
Male	35/85	412(306524)
Race		
White	23/99	33.3(22.445.7)
Norwhite	15/27	55.6 (35.3-74.5)
Region		
us	11/35	30.6 (16.3-48.1)
Ex-US	31/65	47.0 (34.6-59.7)
ECOG P5		
0	28/75	37.3 (26.4-49.3)
1	14/27	51.9 (31.9-71.3)
PD-L1 status		
PD-L1-(CPS <10)	28/58	48.3 (35.0.61.8)
PD-L1+ (CPS 210)	12/30	30.8 (17.0.47.6)
Tumor pattern at study entry	e	
CIS with T1	5/12	41.7 (15.2.72.3)
CIS with high-grade Ta	7/25	28.0 (12.149.4)
CIS	30/65	46.2 (33.7-59.0)
Baseline disease status*		
Persistent HR NMIBC	9/26	34.6 (17.245.7)
Recurrent HR NMIBC	31/71	43.7 (31.9-56.0)
Not classified	2/5	40.0 (53-853)
		0 20 40 80 100
		De wit et al. ASCO 2019

Selection of ongoing trials							
Trial	Туре	ICI	Location	Criteria	Sample size		
		SING	LE AGENT				
NCT02808143	Phase 1 Single-arm	Pembrolizumab intravesically	Northwestern University	High risk or BCG refractory	27		
NCT03950362	Phase 2 Single-arm	Radiotherapy + avelumab IV	France	Bcg-unresponsive	67		
NCT03519256	Phase 2 Three-arm	Nivolumab IV Nivo + IDOi Nivo + IDOi + BCG	US, EUROPE	BCG unresponsive	436		
NCT03106610	Phase 2	Gemcitabine intravesically + Pembo i,v	NCI	BCG unresponsive	72		
NCT02901548	Phase 2	Durvalumab i,v	Lee Moffitt Cancer Center	BCG unresponsive CIS	34		

Immune checkpoints inhibitors in NMIBC : the need of biomarkers						
	Lu	minal	Basal			
	I	II	111	IV		
Imm	une desert	Inflamed tumor	Inflamed but	immune sup	pressed	
•	•••					
٠	Tumor cell					
•	Immune cells MDSc, fibrobla	(Tumor-infiltrating lym 1st, stroma cells	phocytes)			

Conclusion

- Current data support the investigation of ICI in NMIBC
- Large phase 3 trials ongoing
- Safety is key
- Ultimate goal: bladder preservation and maybe BCG substitution
- ALBAN is ongoing: feel free to participate

