

from the total tonors s	M 1520 COURS		
	Training set, n = 1018		Validation set, n = 506
	132 (12.9) 750 (73.7) 268 (26.3)		68 (13.4) 375 (74.1) 131 (25.9)
ESUR score	Likert Scale	ESUR score	Likert scale
0.855 ± 0.019	0.845 ± 0.019	0.873 ± 0.022	0.848 ± 0.024
67.4 (58.7-75.3)	75.0 (66.7-82.1)	69.1 (56.7-79.8)	73.5 (61.4-83.5)
92.3 (90.3-94.0)	79.9 (77.1-82.5)	92.2 (89.2-94.5)	81.5 (77.5-85.0)
30.7 (48.0-04.0)	95.5 (93.7-96.9)	95.1 (92.4-96.8)	95.2 (92.4-97.0)
0501933-90.31		Contraction of the second s	
	ESUR score 0.855 ± 0.019 ≥9 67.4 (58.7-75.3) 92.3 (903-94.0) 36.7 (903-94.0)	n = 1018 132 (129) 730 (737) 266 (263) ESUR score Likert Scale 90 (74) 0.465 ± 0.019 90 (77) 750 (667-82.1) 974 (587-75) 750 (667-82.1) 974 (587-752) 750 (771-82.5) 974 (587-752) 750 (766-742.1) 974 (587-752) 750 (771-82.5) 974 (587-752) 750 (771-82.5)	III - 1018 III - 1018 III - 1018 730 (73.7) 266 (26.3) ESUR score Libert Scale ESUR score 0455 ± 0019 0466 ± 0019 047 ± 0022 0 04 ± (58.7-75.0) 04 ± (58.7-75.0) 05 ± 0019 04 ± (58.7-75.0) 05 ± 0019 04 ± (58.7-75.0) 05 ± 0019 05 ± 0019 06 ± 0019 07 ± 0022 08 ± 0019 08 ± 0019 09 ± 0019 04 ± 0019 08 ± 0019 09 ± 0019 09 ± 0019 09 ± 0019 09 ± 0019 09 ± 0019 09 ± 0019 09 ± 0019 09 ± 0019 09 ± 0019 09 ± 0019 010 ± 0019 010 ± 0019 010 ± 0019 010 ± 0019 010 ± 0019 010 ± 0019 010

THE LANCET	Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Ahmed HU et al. PROMIS study group. Lancet. 2017 Feb 25;389(10071):815-822.
 Multice against Clinical 	ntre, paired-cohort, confirmatory study to test diagnostic accuracy of MP-MRI and TRUS-biopsy template prostate mapping biopsy [TPM-biopsy]. y significant PCa: Gleason score 24 + 3 or a maximum cancer core length 6 mm or longer.

Test attribute	TRUS guided	MP-MRI	Odds ratio (95 %Cl)	
Sensibility	48%	93%	0,06 (0,02-0,12)	<0,0001
Specificity	96%	41%	0,02 (0,003-0,05)	<0,0001
Positive Predictive Value	90%	51%	8,2 (4,7-14,3)	<0,0001
Negative Predictive Value	74%	89%	0,34 (0,21-0,55)	<0,0001

	Vascular-targeted photodynamic therapy (n=206)	Active surveillance (n=207)	Hazard ratio (95% CI)	pvalue				
Progression	58 (28%)	120 (58%)	0-34 (0-24-0-46)†	<0.0001‡				
Criteria for progression§	Criteria for progression§							
>3 positive cores	>3 positive cores 23 (11%) 58 (28%) NC <0.0001¶							
Gleason pattern a-4	Glasson patterni 4 49 (24%) 91 (44%) NC -000051 Guercoro telepticy 5mm 51 (25%) S1 (25%) NC 0.0017 PAA-10 right, in three 31 (3%) 14 (2%) NC 0.0017 PAA-10 right, in three 3 (3%) 14 (2%) NC 0.0017 Amy T3 prosthic noncer 0 400 NC NA Montation 0 0 NC NA Prosthic noncer white death 0 0.00 NC NA Prosther noncertwist memory.1 312 (4%) 32 (47) (52-523) -0000151							
Cancer core length >5 mm								
PSA >10 ng/mL in three consecutive measures								
Any T3 prostate cancer								
Metastasis								
Prostate cancer-related death								
Negative biopsy result at month 24								
Data are n (%) unless otherwise stated HisbBreg procedure was used to adjus proporticinal harats model with result and disease states (unitareal/bitsmai) treatment groups, cos proportional harat cores, prostate volume, and disease stat one catterion for progression. (Riom et model with treatment as feed effect a (unitareal/bitsmai) as covariants.	NA=not applicable. NC t for multiplicity of the t ment as fixed effect and as covariates. {From th cards model with treatm itus (unilateral/bilateral) earnon's <u>z</u> ² test for obsee and baseline age, number	= not calculated. wo co-primary e baseline age, nu e log-rank test of ent as fixed effe as covariates. §/ ved success. []Ac of positive core	PSA-prostate-specific i ndpoints. (Adjusted ha mber of positive cores, i equality of survival cur ct and baseline age, nor i participant might hav justed risk ratio. Logist s, prostate volume, and	ntigen. "The and ratio. Cox rootate volume, es across ber of positive met more than : regression disease status				
Table 2. Company of Company	Table 3: Commence of Commence							

Long	term clinical re	esults
	"UROLOGY" Manufical Association	
<section-header><section-header><section-header><section-header><text><text><text><text><text><list-item><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></list-item></text></text></text></text></text></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	<text><text><text><text><text><text><text></text></text></text></text></text></text></text>
Hoptaus Universitate Centre		BAU2018

Personal series in the series of t

Take home messages

- Prostate cancer heterogeneity needs different treatment approaches.
- We have the tools to accurately diagnose our patients (but these are not 100 %)
- We have the tools to selectively treat our patients (but these are not 100%)
- Focal therapy with HIFU provides cancer control and QoL preservation.
- HIFU treatment offers an option for radio-recurrent prostate cancer
- Good patient selection and diagnosis = most important part of success.

Table 4 Histological characteristics of the individual turnour foci State Volume $\ge 0.5 \text{ cm}^2$ ECE SVI Turnour type Total Colsons ≥ 7 Colson < 6 Volume $\ge 0.5 \text{ cm}^2$ ECE SVI Unificial 22 7 31.8 15 66.2 18 81.8 5 22.7 7 3.6 5 16 16 5 16 16 16 16 16 16 16 16 16 16 16 16 16 16	Role	of in e 2011 Me DRIGIN/ Histolog	nde Protes Care orien Protester AL ART cical ch	ex le re and Prototo Di license Air repose TCLE harracteri	stics of	46-52 852711 onpose the ind	ex lesion	in who	le-moi	int		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Table 4 Histologic	al character Total	istics of th Gleas	e individual son ≥7	tumour foo Gleas	ci on ≤6	Volume	≥0.5 cm ³	E	CE	5	VI
Unifical 22 7 31,8 15 682 18 81,8 5 22.7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			N	%	N	%	N	%	N	%	N	%
Abbreviations: ECE, extracapeular extension; SVI, seminal veside invasion. Internet is enforced: revealed by seminalized internet in the seminary seminary in a control of a finance presentation is the same of the other of the finance of the finance of the seminary in an extended of presentation is the same of the other of the finance of the seminary internet in the seminary presentation is the same of the other of the seminary internet internet in the seminary internet internet presentation is the same of the seminary internet internet in the seminary internet interne	Unifocal Index lesions Secondary lesions Total	22 78 170 270	7 24 1 32	31.8 30.7 0.6	15 54 169 238	68.2 69.3 99.4	18 66 22 106	81.8 84.6 12.9	5 13 2 20	22.7 16.6 1.1	7 5 0 12	31.9 6.4 0
tumour foci were identified. In multificial disease, tumour volume, Greaton score and pathological stage were almost invariably defined by the index lesion of the specimen; among the 170 satellite foci 148 (67%) were < 63 cm ² and 169 (99.4%) had Glason score < 6 . Using the defined eiteria, 51%	Unifocal Index lesions Secondary lesions Total Abbreviations: ECE, es	22 78 170 270 tracapsular e	7 24 1 32	31.8 30.7 0.6	15 54 169 238 sicle invasion	68.2 69.3 99.4 n. construction test focality in set- focality in set- focality in set- focality in set- focality in set- disease, tumo he index lead	18 66 22 106 cting men for h mid have been cal (73%) and b vouune, Cile n of the specin	81.8 84.6 12.9 by to contribut out therapy we suitable for for suitable for sui	5 13 2 20 e to disease is evaluate trive radico la total, 27 pathologic 170 satelli 170 satelli	22.7 16.6 1.1	7 5 0 12	3

What about true GS	6 ?	
Original	ARTICLE	
Do Adenocarcinomas of the (GS)≤6 Have the Pote Lymph Hillary M. Ross* Oloksand N. Kryven Thomas M. Wuker, J and	Prostate With Glea ential to Metastasiz Nodes? Ko,† Janet E. Cowan,‡ Jeffry P Jonathan I. Epstein, MD*f#	ason Score e to ^{Simka,‡§}
Abstract: Although rare, there are cases within reported series of men with Glassian score (CS) 25 of an ended productionism that the series of the series of the series of the series of the statistics on whether period. Use instances occurs in tensors with GS 5 of using the International Society of Urological Plathology (CST) ¹⁰ methods (CS scores). We consider a series of the	pattern 4 or 5, as better defined by the grading system, is required for metastat Key Words: Gleason score, radical pros metastates (<i>Am J Sarg Pathol</i> 2012;36:1346-1352)	current ISUP updated ic disease. tatectomy, lymph node
14'123 case of true GS 6 c	n whole-mount patholo	ogy
22 lymph nodes positive – on	review : all had higher	grade
		Ross et al, Am J Surg Pathol 20
Hopitaux Universitaire		BAU2018